Bimba Metric Position Sensing Solutions

Switch Selection Chart

Switch Type				$\begin{aligned} & \text { Original } \\ & \text { Line } \\ & \text { ISO } 6432 \end{aligned}$	ISO 6431	Flat-1 Square Flat-1 Flat-II Square Flat-II	PneuTurn	Ultran	Ultran Slide	Page
Reed Switch	MRS-. 027	2 wire (track)	28 V max AC/DC	x						7.8
	MRS-. 087	2 wire (track)	200 V max AC/DC	X						7.8
	MRS-.087-B	2 wire (band)	200 V AC/DC	x			x			7.8
	MRS-.087-BL	$\begin{aligned} & 3 \text { wire (LED, } \\ & \text { band) } \end{aligned}$	6 to 24 V AD/DC	x			X			7.8
	MRS-.087-PBL	$\begin{aligned} & 2 \text { wire (LED, } \\ & \text { band) } \end{aligned}$	$\begin{aligned} & 3 \text { to } 120 \mathrm{~V} \mathrm{AC} \\ & (6 \text { to } 24 \mathrm{~V} \text { DC) } \end{aligned}$	X			x			7.8
	MRS-1.5-S	2 wire (track)	12 to 230 V AC only (100 mA min)	X						7.8
	MRS-1.5-B	2 wire (band)	12 to 230 V AC only (100 mA min)	X			x			7.8
	MRS-1.5	2 wire (track)	12 to 230 V AC only	x						7.8
	MR	2 wire (LED, 4mm round)	3 to 120 V AC or 3 to 24 V DC	X			x^{1}		x^{2}	7.12
	MRS-AB	2 wire (track)	10 to 110 V AC/DC		x					7.14
	RSU-1, RSUM-1	2 wire (threaded barrel)	200 V max AC/DC					x	X	7.8
Solid State Switch	HSK	NPN (LED, band)	4.5 to 30 V DC	x			X			7.4
	HSC	PNP (LED, band)	4.5 to 30 V DC	X			X			7.4
	HK	NPN (LED, track)	4.5 to 30 V DC			x			x^{2}	7.5
	HC	PNP (LED, track)	4.5 to 30 V DC			x			x^{2}	7.5
	HS-AB	3 wire (track)	10 to 27 V DC		x					7.14
GMR Switch	MSC	PNP (LED, 4mm round)	5 to 24 V DC	x			x^{1}		x^{2}	7.12
	MSK	NPN (LED, 4mm round)	5 to 24 V DC	x			x^{1}		x^{2}	7.12
	MS	Autoconfigure (LED, 4mm round)	5 to 24 V DC	X			x^{1}		x^{2}	7.12
Inductive Proximity Sensor	PCQ	PNP (threaded barrel)	10 to 30 V DC					X	X	7.15
	PKQ	NPN (threaded barrel)	10 to 30 V DC					X	X	7.15

${ }^{1}$ For Pneu-turn (-T option required).
${ }^{2}$ For Ultran Slide (-U option required).
${ }^{3}$ For Ultran Slide (-T option required, -U option is recommended).
For Band Mounted Switches, part number must include bore size for band to be included. See catalog section for details.

Bimba offers pre-tested position sensing solutions for Bimba actuators. Our solutions provide a cost effective interface between the pneumatic actuators and electrical control systems. Our pre-tested solutions also eliminate costly, time-consuming design and fabrication required if switches are purchased separately and provide an aesthetically pleasing installation.
In this catalog section you will find both traditional Bimba switches as well as newer generations of Bimba switches to allow for maximum flexibility to fit your application.
The switches perform the same functions as conventional limit switches. They can be used as position indicators, cycle counters, or to confirm operation.
All Bimba switches are designed to sense a magnet that is incorporated into the piston of the cylinder. Magnets are standard in Bimba MRS cylinders, but must be purchased as an option on other Bimba actuators.
A variety of outputs are offered for each switch family including PNP (transistor sourcing), NPN (transistor sinking), normally open contacts, and higher power triac.
Actuator application data such as electrical specifications, operating window and hysteresis for actuator/switch combinations is offered on page 7.16 of this catalog.
A Sensing Application section concerning how the switches work, helpful application tips, and sensing terms is located on page 7.22.

The Switch Selection Chart on page 7.1 can be used to choose switches for an actuator to insure mounting and sensing compatibility.

Benefits of the Magnetic Reed Switch

- Compact
- Lower cost
- Easy to mount on a variety of Bimba actuators
- Able to mount several switches on one actuator
- LED available in many models for ease of positioning and troubleshooting
- Many models:
- Low, medium and high current models, AC or DC, and triac-type switches for inductive kickback or inrush current.
- Track- and band-mounted models
- Choice of pigtail leads in 2 lengths or quick connect with two cable length options.

Benefits of the Solid State Switch

- Compact
- Solid state reliability - no moving parts means longer life, no contact bounce
- Easy to mount on a variety of Bimba actuators
- Able to mount several switches on one actuator
- LED for ease of positioning and troubleshooting
- Reverse polarity and overvoltage protection
- Available with pigtail leads (in 2 lengths) or quick connect (with two cable length options)
- Faster signal speeds

	Programmable Controllers	Relays	Solenoids	Indicator Lights		Motors	Time Counters
				Bulbs	Solid State		
Reed Switch	Yes	$<5 \mathrm{VA}{ }^{\text {* }}$	$<5 \mathrm{VA}{ }^{*}$	$<5 \mathrm{VA}{ }^{\text {* }}$	Yes	<5VA*	$<5 \mathrm{VA}{ }^{*}$
Triac Reed Switch**	No	Yes	Yes	Yes	No	Yes	Yes
Solid State Switch	Yes	<150mA	No	<150mA	Yes	No	<150mA
GMR Switch	Yes	<50mA	No	<50mA	Yes	No	$<50 \mathrm{~mA}$

[^0]
Bimba Quick Connect Cables

Switch Type	Cable Type	Description／Specification
MRSQ，HKQ， HCQ，HSKQ， HSCQ	C4 （2 Meter Snap Tight） C4X （5 Meter Snap Tight）	Straight 8mm snap style connector（non－shielded） Connection：Snap Tight connector Contact carrier material：PA 6－GV（Nylon） Molded connector head：Polyurethane（PUR） Contact Material：gold plated brass Current Rating： 4.0 A Voltage Rating： 125 V ＠4A Jacket Material：Polyvinyl Chloride（PVC） Conductors： 3×24 AWG Temperature Range：$-40^{\circ} \mathrm{F}$ to $200^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$ Protection Class：NEMA 1，3，4，6， 13 and IEC IP67 Insulation Resistance：$\geq 10^{\circ} \Omega$ Where Used：Standard cables for most quick connect switch applications．Switch Models using the C4 standard series include the MRS series（．087／．027）and Hall Effect switches （HKQ，HCQ，HSKQ，HSCQ）
MSQ，MRQ， MSKQ，MSCQ， MRS－ABQ HS－ABQ	C4－T （2 Meter Threaded Coupling Nut） C4X－T （5 Meter Threaded Coupling Nut）	Straight 8 mm threaded style connector（non－shielded） Connection：Threaded connector Contact carrier material：PA 6－GV（Nylon） Coupling Nut：Polyurethane（PUR） Contact Material：nickel plated brass Current Rating： 4.0 A Voltage Rating： 125 V ＠4A Jacket Material：Polyvinyl Chloride（PVC） Conductors： 3×24 AWG Temperature Range：$-40^{\circ} \mathrm{F}$ to $200^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$ Protection Class：NEMA 1，3，4，6， 13 and IEC IP67 Insulation Resistance：$\geq 10^{\circ} \Omega$ Where Used：Standard cables on the Mini－Switch quick connect products（i．e．，MSQ，MRQ，MSKQ，MSCQ）．The threaded coupling nut allows easier interconnection to the mini switch products．

Notes：

－All quick connect products use a universal male connector that can use either a threaded or snap connector．
－All accessory cables can be ordered separately，（i．e．，for MRS or Hall Effect quick connect switch applications where customers prefer a threaded coupling between the switch and the cable，or require shielded cable．）

Wire Color Codes

Switch Wire Codes

All switch wiring conforms to the CENELEC EN 50044 wiring standard，which designates the following：
Important Note： 2 wire switches only use the Blue and Brown wires．Do not connect the Blue and Brown wires across the power supply，as the switch will short out．For Sinking Circuits，connect the Blue wire to ground（negative），and the Brown wire to the PLC Sinking Input．For Sourcing Circuits，connect the Brown wire to（＋）Positive，and the Blue wire to the PLC Sourcing Input．

How to Order

Original Line, Pneu-Turn and Linear Thruster HSK and HSC Switches

HSK QCX-04

SWITCH TYPE

24" (0.6m) pigtail lead HSC-Current Sourcing (PNP) HSK-Current Sinking (NPN)

OPTIONAL
O $=$ Include if $144 "(3.66 \mathrm{~m})$ pigtail lead needed (Not applicable with Quick Connect)
Omit = 24" pigtail lead

 accompanies switch

See page 7.3 to order Cable Connectors separately

Base Model	Base Model 24" (0.6m) pigtail lead*	OPTIONS			
		$\begin{aligned} & \text { 144" (3.66m) } \\ & \text { pigtail lead } \end{aligned}$	Quick Connect		
			(no cable)	(2m cable)	(5m cable)
HSC - \square	Blank	X	Q	QC	QCX
HSK - \square					

* Bands are included in the price.

Sample Part Numbers:
HSK - sensor with NPN (current sinking) output and 24" pigtail lead.
HSCQCX - sensor with PNP (current sourcing) output with male 8 mm connector and female 8 mm cable, 5 meters long.

Dimensions

HSC, HSK Solid State Switches (inches shown, mm in parentheses)

How to Order

Flat Series and Ultran

HC QCX

See page 7.3 to order Cable Connectors separately

Base Model	Where Used	Base Model 24" (0.6m) pigtail lead	OPTIONS			
			X	Quick Connect		
			$\begin{gathered} 144^{\prime \prime}(3.66 \mathrm{~m}) \\ \text { pigtail lead } \end{gathered}$	$\begin{gathered} Q \\ \text { (no cable) } \end{gathered}$	$\begin{gathered} \text { QC } \\ (2 \mathrm{~m} \text { cable) } \end{gathered}$	$\begin{gathered} \text { QCX } \\ \text { (5m cable) } \end{gathered}$
HC HK	Ultran Slide, High Load Ultran, Flat-1 and Flat-II Square Flat-1, Square Flat-II (63 to 101 mm)	Blank	X	Q	QC	QCX

* Note: 0.38 minimum stroke required for Flat-1 cylinders.

Sample Part Numbers:
HC - sensor with PNP (current sourcing) output and 24 " pigtail lead.
HKQCX - sensor with NPN (current sinking) output with male 8mm connector and female 8mm cable.
5 meters long.

Dimensions

HC, HK Solid State Switches (inches shown, mm in parentheses)

HC, HK

HCQ, HKQ

Electrical Circuit Diagrams

HC, HK, HSC, and HSK Switches

Typical Solid State Sourcing Configuration for HSC Models (PNP)

HSC, HC
Basic Circuit Layout for Programmable Logic Controllers (PLC) and Normally Off Relays and Solenoids
CAUTION: Shorting black wire to ground will damage switch

Typical Solid State Sinking Configuration for HSK Models (NPN)

HSK, HK
Basic Circuit Layout for Programmable Logic Controllers (PLC) and Normally Off Relays and Solenoids
CAUTION: Shorting black wire to supply voltage will damage switch

8mm Male Connector

 Sourcing Solid State Switch

HSCQ, HCQ

8 mm Male Connector
Sinking Solid State Switch

HSKQ, HKQ

Pin and Wire Assignments for Quick Connect

8mm Female Connector

Face View of Male Connector

Mounting

Original Line Cylinders and Pneu-Turn Rotary Actuators HC, HK, HSC, and HSK Switches

The switch can be mounted anywhere along the length and circumference of the actuator body. Mounting hardware includes the switch, a presized stainless steel band, a chrome-plated zinc die cast housing and a ball head screw. 2-3 in.-lbs. of torque recommended for mounting.

Flat-1, Flat-II, Square Flat-1 2-1/2" to 4" (63 mm to 101mm) FO2 and FOP Cylinders and Ultran Slide Rodless Cylinders

Flat-1 models ordered for position sensing (-M option) and Ultran Slide rodless cylinders ordered with track (-T option) include a special switch track. The switch includes a washer, screw and nut.

Note: Hold switch firmly against cylinder body to avoid air gaps.

Mounted Dimensions
 Round Flat-1 and Square Flat-1 Cylinders

The switch mounting causes an extension outside of the cylinder diameter as shown.

For Square Flat-1 Series Cylinders
(inches shown, mm in parentheses)

Bore Designator	Bore	G
04	$3 / 4^{\prime \prime}(19 \mathrm{~mm})$	$0.365^{\prime \prime}(9.3)$
Switch Location For the M option, the switch mounting track will be located in		
09	$1-1 / 16^{\prime \prime}(27 \mathrm{~mm})$	$0.365^{\prime \prime}(9.3)$
17	$1-1 / 2^{\prime \prime}(38 \mathrm{~mm})$	$0.365^{\prime \prime}(9.3)$
31	$2^{\prime \prime}(50 \mathrm{~mm})$	$0.365^{\prime \prime}(9.3)$
50	$2-1 / 2^{\prime \prime}(63 \mathrm{~mm})$	$0.270^{\prime \prime}(6.9)$
Position 2. To locate		
the track in other		
positions, specify M1 or		
M4. To include		
additional track, specify		
70	$3^{\prime \prime}(76 \mathrm{~mm})$	0.300 " (7.6)
125	$4^{\prime \prime}(101 \mathrm{~mm})$	$0.160^{\prime \prime}(4.1)$

How to Order

Original Line, Double-Wall, Ultran Slide Rodless Cylinders, and Pneu-Turn Rotary Actuators MRS and RSU Switches

NOTE: Before ordering, reference switch selection chart on page 7.1 for compatibility.

	MRS-. 027 3/4" \& 9/16" Track Mount	$\begin{aligned} & \text { MRS-.087-BL } \\ & \text { MRS-.087-BLQ } \end{aligned}$	MRS-.087-PBL MRS-.087-PBLQ	$\begin{gathered} \text { MRS-.087-BQ } \\ \text { MRS-.087-Q } \end{gathered}$	MRS-1.5 MRS-1.5-S MRS-1.5-B	$\begin{aligned} & \text { MRS-. } 087 \\ & \text { MRS-.087-B } \end{aligned}$
	2 wire switch	3 wire switch	2 wire switch	2 wire switch	2 wire switch	2 wire switch
Contacts*	SPST Form A					
Contact Rating	3 Watts max.	9 Watts max.	2.5 Watts max.	10 Watts max.	-	10 Watts max.
Switch Voltage	28 max. AC or DC	$\begin{gathered} 6 \text { to } 24 \\ \text { AC or DC } \end{gathered}$	$\begin{aligned} & 3 \text { to } 120 \\ & \text { AC or DC } \end{aligned}$	$\begin{gathered} 120 \\ A C \text { or } D C \end{gathered}$	12 to 230 AC only	200 max. AC or DC
Maximum Current	$\begin{aligned} & 250 \mathrm{~mA} \\ & \text { (Resistive) } \end{aligned}$	$\begin{aligned} & 500 \mathrm{~mA} \\ & \text { (Resistive) } \end{aligned}$	$\begin{gathered} 20 \mathrm{~mA} \\ \text { (Resistive) } \end{gathered}$	$\begin{aligned} & 500 \mathrm{~mA} \\ & \text { (Resistive) } \end{aligned}$	$1.5 \mathrm{amps} @$ $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$ $0.5 \mathrm{amps} @$ $200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$	500 mA (Resistive)
Minimum Current	-	-	10 mA AC or DC	-	0.1 amps	-
Initial Contact Resistance	$\begin{gathered} 0.10 \text { ohms } \\ \text { max. } \end{gathered}$	$\begin{aligned} & 0.10 \text { ohms } \\ & \text { max. } \end{aligned}$	$\begin{aligned} & 0.10 \text { ohms } \\ & \text { max. } \end{aligned}$	$\begin{gathered} 0.10 \text { ohms } \\ \text { max. } \end{gathered}$	-	$\begin{aligned} & 0.10 \text { ohms } \\ & \text { max. } \end{aligned}$
Acuating Time Average	1.0 millisecond	1.0 millisecond	1.0 millisecond	1.0 millisecond	2.0 millisecond	1.0 millisecond
LED Indicator	No	Yes	Yes	No	No	No
Applications	Reed-9/16" \& 3/4" bore low wattage	Reed-24 VDC 3 -wires w/LED		Reed-24 VDC or 120 VAC, 2 -wires No LED quick connect		

* (Normally Open) ${ }^{1}$ (1-1/16" to 2-1/2") ${ }^{2}$ (9/16" to 3/4")

Base Model	Base Model 24" (0.6m) pigtail lead	OPTIONS			
		$\begin{gathered} \hline \mathrm{X} \\ \text { 144" (3.66m) } \\ \text { pigtail lead } \\ \hline \end{gathered}$	Quick Connect		
			$\begin{gathered} \mathrm{Q} \\ \text { (no cable) } \\ \hline \end{gathered}$	$\begin{gathered} \text { QC } \\ (2 \mathrm{~m} \text { cable) } \\ \hline \end{gathered}$	$\begin{gathered} \text { QCX } \\ \text { (5m cable) } \\ \hline \end{gathered}$
MRS-.0271	Blank	X	Q	QC	QCX
MRS-. 0871	Blank	X	Q	QC	QCX
MRS-.087-B- \square^{2}	Blank	X	Q	QC	QCX
MRS-.087-BL- \square^{2}	Blank	X	Q	QC	QCX
MRS-.087-PBL- \square^{2}	Blank	X	Q	QC	QCX
MRS-1.5	Blank	X	Q	QC	QCX
MRS.-1.5-S	Blank	X	Q	QC	QCX
MRS-1.5-B- \square^{2}	Blank	X	Q	QC	QCX
RSU-1	Blank	X	Q	QC	QCX
RSUM-1	Blank	X	Q	QC	QCX

[^1]
Sample Part Numbers:

MRS-. 087 - sensor with 9 watt normally open contact and 24 " pigtail lead.
MRS-.087-BLQCX-02 - sensor with 1.5 amp normally open contact output, 8 mm male quick connect, and 8 mm female cable 5 meters long.

Dimensions

(inches shown, mm in parentheses)

MRS and RSU Switches

MRS-.087-B
MRS-.087-BL
MRS-.087-PBL
MRS-1.5-B

MRS-. 027

To order longer leads, specify D-12660-Alead length in inches. Consult BIMBA distributor or factory for prices.

MRS-1.5

To order longer leads, specify D-7001-A-lead length in inches. Consult BIMBA distributor or factory for prices.

MRS-. 087

To order longer leads, specify D-7000-A-lead length in inches. Consult BIMBA distributor or factory for prices.

MRS-1.5-S

To order longer leads, specify D-16312-A-lead length in inches. Consult BIMBA distributor or factory for prices.

RSU-1, RSUM-1

Electrical Circuit Diagrams

MRS and RSU Switches

MRS-. 027
MRS-. 087
MRS-.087-B
RSU-1
RSUM-1

MRS-.087-BL

MRS-1.5
MRS-1.5-S
MRS-1.5-B

MRS-.087-BQ
MRS-.087-PBLQ

8mm Male Connector

MRS-.087-BLQ

8mm Male Connector

MRS-.087-PBL

Pin and Wire Assignments for Quick Connect

Note: On Quick Connect reed switch models, connect only the Blue and Brown wires on the mating cable and cut back the Black wire. Do Not connect switch to a mating cable that has been previously wired for a 3 wire solid state switch, as it will short the MRQ switch.

Mounting

Band-style (MRS)

The switch can be mounted anywhere along the length and circumference of the actuator body. Mounting hardware includes the switch, a band, a U-shaped bracket and a screw (included). 2-3 in.- lbs. of torque recommended for mounting

The Bimba Magnetic Reed switches are band mounted to the actuator. For all band-style switches, a pre-sized band is ordered by adding a bore size designation as the last three digits of the basic switch model number.

Bore Designator	Bore (mm)
M10	10
M12	12
M16	16
M20	20
M25	25

Track-style (MRS)

Miniature Position Sensing track lengths can now be purchases separately for field mounting of custom track locations. Simply Specify the length of track desired after the part number.
Mounting recommendations:

- Clean body with acetone. Remove all oil from body surface.
- Avoid mounting track over rolled construction. Locate edge of track $0.175^{\prime \prime}$ from rolled construction.
- Use a solid continuous bead of glue for the entire length of track used. Bead should fill center channel of track.
- Adhere to recommended cure times as specified by the glue manufacturer.

Bores (mm)	Part Number
$10-20$	D-74168-A-length
$25-50$	D-78527-A-length

Loctite U-05FL or similar adhesive is recommended (not included).

How to Order

EF, Twin Bore, Pneu-Moment, Pneu-Turn, Ultran Slide and Linear Thruster MR, MS, MSC, MSK Switches

The Model Number for all extruded track mount switches consists of three alphanumeric clusters. These designate switch type and lead length. Please refer to the chart below for an example of Model Number

MSCQCX. This is a Solid State switch with PNP output including a Quick Connect cable attachment and a 5 meter mating cable.

Base Model	Base Model with Options			
MR (Magnetic Reed)	MRX (3.6m leads)	MRQ (Quick Connect)	MRQC (2m mating cable)	MRQCX (5m mating cable)
MSC	MSCX	MSCQ	MSCQC	MSCQCX
(GMR Source output)	(3.6 leads)	(Quick Connect)	(2m mating cable)	(5m mating cable)
MSK	MSKX	MSKQ		
(QMR Sink output)	(3.6m leads)	MSKQC	MSKQCX	
(Quick Connect)	(2m mating cable)	(5m mating cable)		
MS	MSX	MSQ		
(Auto-configure)	(3.6m leads)	(Quick Connect)	MSQC	
(2m mating cable)	MSQCX			
(5m mating cable)				

Sample Part Numbers:
MR - Sensor with Normally open contact and 24" pigtails
MSKQCX - Sensor with NPN (Current sinking) output and 8 mm male quick connect and cable with 8 mm female connector, 5 meters long

See page 7.3 to order Cable Connectors separately

Mounting

To Install:
Slide the switch into the cylinder's switch track. Extend and retract the cylinder while positioning the switch until the switch's operating window is correct. Secure the switch in the cylinder track by turning the set screw with a hex driver. Cycle the cylinder (both extending and retracting) a number of times to confirm correct oepraiton and adjust as required.
Note: Maximum torque on set screw is $\mathbf{. 1 7 0} \mathrm{N}-\mathrm{m}$ (1.5 in .-Ibs.). Do not overtighten.

Dimensions

MR, MRX, MRQ, MS, MSX, MSQ, MSC, MSCX, MSCQ, MSK, MSKX, MSKQ mm (in.)

Electrical Circuit Diagrams

MR, MS, MSC, MSK Switches

MR, MRX, MRQ (Reed Switch)

Note: On Quick Connect reed switch models, connect only the Blue and Brown wires on the mating cable and cut back the Black wire. Do Not connect switch to a mating cable that has been previously wired for a 3 wire solid state switch, as it will short the MRQ switch.

MSK, MSKX, MSKQ (Sinking, Solid State)
MSC, MSCX, MSCQ (Sourcing, Solid State)

MS, MSX, MSQ

Color Codes	
Brown	$(+)$ Positive
Black	Output
Blue	(-) Negative

How to Order

ISO 6431, MRS-AB and HS-AB Switches

The Model Number for all extruded track mount switches consists of three alphanumeric clusters. These designate switch type and lead length. Please refer to the chart below for an example of Model

Number MSCQCX. This is a Solid State switch with PNP output including a Quick Connect cable attachment and a 5 meter mating cable.

Switch Type

MRS- Magnetic Reed Switch
HS- Hall Effect Switch (PNP)

Optional

ABQ- M8 Male connector
AB- 2 meter pigtail

Model	Pigtail (2m)	MRS-AB	HS-AB
	M8 Male Connector (0.3m)	MRS-ABQ	HS-ABQ
Operation (normally open)		Reed contact (2 wire)	Hall effect PNP (3 wire)
Voltage		10-110 V AC/DC	10-27 V DC
Protection Rating		IP 67	
Max. current		250 mA inductive	
Max. load		$8 \mathrm{~W}, 10 \mathrm{VA}$	6 W
Circuit Protection		none	Reverse polarity reverse spikes
Switch time		<1,8 ms	$<1 \mathrm{~ms}$
Operating temperature		$-10^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$	

See page 7.3 to order Cable Connectors separately

Inductive Proximity Sensor

Introducing Bimba Inductive Proximity Sensors for use on Ultran products. Use it on the Ultran product line for end of stroke detection where inductive solid state sensing is preferred. The sensor can also be used on other applications where inductive proximity sensing is required. Sensor threads into Ultran end blocks.

Model Number	Description
PCQ	5/16-24 Threaded Barrel type Inductive Proximity Sensor with Sourcing Output
PKQ	$5 / 16-24$ Threaded Barrel type Inductive Proximity Sensor with Sinking Output
PCQC	$5 / 16-24$ Threaded Barrel type Inductive Proximity Sensor with PNP (sourcing output) with 2m mating cable
PKQC	$5 / 16-24$ Threaded Barrel type Inductive Proximity Sensor with NPN (sinking output) with 2 m mating cable
PCMQC	8 mm Threaded Barrel type Inductive Proximity Sensor with PNP (sourcing output) with 2 m mating cable
PKMQC	$8 \mathrm{8m}$ Threaded Barrel type Inductive Proximity Sensor with PNP (sinking output) with 2 m mating cable
PCQCX	$5 / 16-24$ Threaded Barrel type Inductive Proximity Sensor with PNP (sourcing output) with 5m mating cable
PKQCX	$5 / 16-24$ Threaded Barrel type Inductive Proximity Sensor with PNP (sourcing output) with 5m mating cable
PCMQCX	$8 \mathrm{8m}$ Threaded Barrel type Inductive Proximity Sensor with PNP (sourcing output) with 5 m mating cable
PKMQCX	8 mm Threaded Barrel type Inductive Proximity Sensor with PNP (sourcing output) with 5 m mating cable

See page 7.3 to order Cable Connectors separately

Dimensions

Actuator Application Data

Hysteresis and Operating Windows

Hysteresis

Bimba Solid State switches are subject to hysteresis. Hysteresis is the difference in magnetic field strength needed to initiate switch operation versus the field strength needed to sustain switch operation. The effect is that the switch break point will be different from the switch make point in the piston travel.

Operating Window

The operating window is the distance the piston travels while the switch is in the "ON" state, and includes the hysteresis action. For the Solid State Switch, hysteresis is greater on one side of the operating window because this switch is sensitive to only one side of the magnet.
For high speed equipment, the time duration of the switch signal may be critical. The time duration is a function of the operating window length and the speed of operation of the actuator. It is calculated by dividing the minimum travel in the operating window by the piston speed, taking into account the hysteresis effect. The illustrations and chart below show the operating windows for the Solid State Switch.

END OF STROKE OPERATION

MID STROKE OPERATION

MRS Switches
MRS-. 087

Cylinder		Operating Window	Hysteresis Maximum	Repeatability
Type	Bore			
Pneu-Turn	$9 / 16^{\prime \prime}(14 \mathrm{~mm})$	62°	9°	$\pm 3^{\circ}$
	$3 / 4^{\prime \prime}(19 \mathrm{~mm})$	51°	7°	$\pm 2^{\circ}$
	$1-1 / 16^{\prime \prime}(27 \mathrm{~mm})$	54°	9°	$\pm 2^{\circ}$
	$1-1 / 2^{\prime \prime}(38 \mathrm{~mm})$	40°	6°	$\pm 2^{\circ}$
Ultran	$2^{\prime \prime}(50 \mathrm{~mm})$	30°	5°	$\pm 1^{\circ}$

Actuator Application Data

MR, MS, MSC, MSK Switches

Original Line Cylinder Window Switch Comparisons for Mini GMR and Mini Reed Switches						
Bore			Window		Maximum Hysteresis	Repeatability
			MS, MSK, MSC, Mini Reed MR	Mini Reed		
007	5/16"	8mm	.250" (6mm)	.350" (9mm)	.040" (1mm)	$\pm .010{ }^{\prime \prime}(.3 \mathrm{~mm})$
01	7/16"	$10-12 \mathrm{~mm}$.275" (7mm)	. $3755^{\prime \prime}$ (10mm)	.040" (1mm)	$\pm .010{ }^{\prime \prime}(.3 \mathrm{~mm})$
02	9/16"	16 mm	.350" (9mm)	.450" (11mm)	.040" (1mm)	$\pm .010{ }^{\prime \prime}(.3 \mathrm{~mm})$
04	3/4"	20 mm	. 375 " (10mm)	.475" (12mm)	.045" (1mm)	$\pm .010{ }^{\prime \prime}(.3 \mathrm{~mm})$
09	1-1/16"	25mm	.425" (11mm)	.550" (14mm)	.045" (1mm)	$\pm .010{ }^{\prime \prime}(.3 \mathrm{~mm})$
17	1-1/2"		.450" (11mm)	. $5755^{\prime \prime}$ (15mm)	.050" (1mm)	$\pm .010{ }^{\prime \prime}(.3 \mathrm{~mm})$
31	$2^{\prime \prime}$.450" (11mm)	.575" (15mm)	.050" (1mm)	$\pm .010$ " (.3mm)

- WINDOW - HYS -
- HYS - WINDOW -

Pneu-Turn Cylinder Window for Mini GMR and Mini Reed Switches						
Bore	Window		Maximum Hysteresis		Repeatability	
	MS/MSK/MSC	Mini Reed MR	MS/MSK/MSC	Mini Reed MR	MS/MSK/MSC	Mini Reed MR
$9 / 16^{\prime \prime}(14 \mathrm{~mm})$	73	93	8	9	2	4
$3 / 4^{\prime \prime}(19 \mathrm{~mm})$	57	75	7	8	1.5	3
$1-1 / 16^{\prime \prime}(27 \mathrm{~mm})$	57	75	6	7	1.5	3
$1-1 / 2^{\prime \prime}(38 \mathrm{~mm})$	47	60	5	6	1	2
$2^{\prime \prime}(50 \mathrm{~mm})$	33	42	4	5	.75	1.5

HSK, HK, HSC, HC Switches
Ultran Slide Rodless Cylinders
(inches shown, mm in parentheses)

Cylinder		Operating Window		Hysteresis		Repeatability
Type	Bore	W1	W2	H1	H2	
Ultran Rodless Cylinders*	0.25 to 0.5 (6.4 to 12.70), depending on individual assembly		± 0.015 (.4)			

*Any ferrous materials within an inch of the Ultran carriage may reduce the magnetic flux and affect switch operation.
HSK and HSC for Pneu-Turn Rotary Actuators

Pneu-Turn Model	Operating Windows				Hysteresis				Repeatability
	Switch Mounted on Side 1		Switch Mounted on Side 2		Switch Mounted on Side 1		Switch Mounted on Side 2		
	CW	CCW	CW	CCW	CW	CCW	CW	CCW	
9/16" (14mm)	84°	46°	46°	84°	47°	$7{ }^{\circ}$	$7{ }^{\circ}$	47°	3°
3/4" (19mm)	61°	34°	34°	61°	34°	5°	5°	34°	2°
1-1/16" (27mm)	55°	30°	30°	55°	31°	5°	5°	31°	2°
1-1/2" (38mm)	41°	23°	23°	41°	23°	4°	4°	23°	2°
2" (50mm)	29°	16°	16°	29°	16°	3°	3°	16°	1°

Flat Products

Bore	Flat Products - Track-Mounted	
	Operating Window	Maximum Hysteresis
$9 / 16^{\prime \prime}(14 \mathrm{~mm})$	$.250^{\prime \prime}(6 \mathrm{~mm})$.050 " $(1 \mathrm{~mm})$
$3 / 4^{\prime \prime}(19 \mathrm{~mm})$	$.300^{\prime \prime}(8 \mathrm{~mm})$.050 " $(1 \mathrm{~mm})$
$1-1 / 16^{\prime \prime}(27 \mathrm{~mm})$	$.300^{\prime \prime}(8 \mathrm{~mm})$.050 " $(1 \mathrm{~mm})$
$1-1 / 2^{\prime \prime}(38 \mathrm{~mm})$	$.300^{\prime \prime}(8 \mathrm{~mm})$	$.050^{\prime \prime}(1 \mathrm{~mm})$
$2 "(50 \mathrm{~mm})$	$.325^{\prime \prime}(8 \mathrm{~mm})$.050 " $(1 \mathrm{~mm})$

Actuator Application Data

Electrical Specifications

MRS Switches

	$\begin{gathered} \text { MRS-. } 027 \\ 3 / 4 " \& 9 / 16 " \\ \text { Track Mount } \end{gathered}$	$\begin{aligned} & \text { MRS-.087-BL } \\ & \text { MRS-.087-BLQ } \end{aligned}$	$\begin{aligned} & \text { MRS-.087-PBL } \\ & \text { MRS-.087-PBLQ } \end{aligned}$	$\begin{gathered} \text { MRS-.087-BQ } \\ \text { MRS-.087-Q } \end{gathered}$	MRS-1.5 MRS-1.5-S MRS-1.5-B	$\begin{gathered} \text { MRS-. } 087 \\ \text { MRS-.087-B } \end{gathered}$
	2 wire switch	3 wire switch	2 wire switch	2 wire switch	2 wire switch	2 wire switch
Contacts*	SPST Form A					
Contact Rating	3 Watts max.	9 Watts max.	2.5 Watts max.	10 Watts max.	-	10 Watts max.
Switch Voltage	$\begin{gathered} 28 \text { max. } \\ \text { AC or DC } \end{gathered}$	$\begin{gathered} 6 \text { to } 24 \\ \text { AC or DC } \end{gathered}$	$\begin{aligned} & 3 \text { to } 120 \\ & \text { AC or DC } \end{aligned}$	$\begin{gathered} 120 \\ A C \text { or DC } \end{gathered}$	$\begin{gathered} 12 \text { to } 230 \\ \text { AC only } \end{gathered}$	$\begin{aligned} & 200 \max . \\ & \text { AC or DC } \end{aligned}$
Maximum Current	$\begin{aligned} & 250 \mathrm{~mA} \\ & \text { (Resistive) } \end{aligned}$	$\begin{aligned} & 500 \mathrm{~mA} \\ & \text { (Resistive) } \end{aligned}$	$\begin{aligned} & 20 \mathrm{~mA} \\ & \text { (Resistive) } \end{aligned}$	$\begin{aligned} & 500 \mathrm{~mA} \\ & \text { (Resistive) } \end{aligned}$	1.5 amps @ $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$ 0.5 amps @ $200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$	500 mA (Resistive)
Minimum Current	-	-	$\begin{gathered} 10 \mathrm{~mA} \\ \mathrm{AC} \text { or } \mathrm{DC} \end{gathered}$	-	0.1 amps	-
Initial Contact Resistance	0.10 ohms max.	0.10 ohms max.	0.10 ohms max.	0.10 ohms max.	-	0.10 ohms max.
Acuating Time Average	1.0 millisecond	1.0 millisecond	1.0 millisecond	1.0 millisecond	2.0 millisecond	1.0 millisecond
LED Indicator	No	Yes	Yes	No	No	No
Applications	Reed- 12 mm \& 19 mm bore low wattage	Reed-24 VDC 3-wires w/LED	Reed-24 VDC or 120 VAC, 2-wires bi-polar, low current, good for PLC	$\begin{gathered} \text { Reed-24 VDC or } \\ 120 \text { VAC, 2-wires } \\ \text { No LED, } \\ \text { quick connect } \\ \hline \end{gathered}$	Triac Reed-AC only, up to 230 VAC, Inductive Inrush OK, 100 mA min.	Reed-24 VDC or 200 VAC, 2-wires No LED, quick connect

* (Normally Open) ${ }^{1}$ (27mm to 50 mm$)^{2}$ (12mm to 19 mm)

HC, HK, HSC, HSK Switches

Input Voltage:
. .
\qquad 150 mA , maximum Sensor Element: .Solid-State Off-State Leakage: 10 microamperes, maximum Reverse Battery: \qquad
\qquad 40 VDC, minimum Transient Protection: 500 Watts of peak power, minimum Overvoltage Protection: . 37 VDC maximum with up to 12 amperes
Sensor Operation Indicator: \qquad .Red LED for Sinking, Yellow LED for Sourcing
Turn-on Time: : \qquad 1 microsecond, maximum
Turn-off Time: 1 microsecond, maximum
"On" Voltage Drop: . .0.4 VDC, maximum, for a Sinking Circuit 1.5 VDC, maximum for a Sourcing Circuit

Operational Temperature Range: $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$, minimum Insulation Resistance: 100 megohms, lead to case with a 500 volt AC and or DC source
Flammability Rating: .UL 94 VO Packaging: IEC 529-1989, Category IP 67 Tests Vibration:Mil-Std-810E, Method 514.1, Category 10 Welding Field Immunity: . . . Immune to welding fields to 4000 amperes, minimum at a minimum distance of $0.25^{\prime \prime}$ (7 mm) CE Mark:CE Compliance per engineering evaluation to certified circuits Cable: 3 conductor, 24 to 26 AWG, Gray PVC outer jacket Repeatability: +/-.005" (.13mm)

Actuator Application Data

Electrical Specifications

MR, MRX, MRQ, MSC, MSCX, MSCQ, MSK, MSKX, MSKQ, MS, MSC, MSQ Switches

Reed Switch (Models: MR, MRX, MRQ)

Circuit	2 Wire, Normally Open, Sinking (NPN) or Sourcing (PNP)
Input Voltage	3 to $120 \mathrm{VAC} / 3$ to 24 VDC
Current Rating	25 mA max.
Contact Rating	3 Watts
Voltage Drop	2.3 V
Shock	$10-2000 \mathrm{~Hz}, 10 \mathrm{~g}$
Vibration	$11 \mathrm{~ms}, 1 / 2$ Sine Wave, 150 g
Turn ON/OFF Time	1.0 millisecond
Operating	-25° to $85^{\circ} \mathrm{C}\left(-13^{\circ}\right.$ to
Temperature	$\left.185^{\circ} \mathrm{F}\right)$
Enclosure	IEC IP 67
Flammability	94 VO
LED Indicator	Red
	CE Compliant

GMR Switch (Models: MSK, MSKX, MSKQ)
Circuit 3 Wire, Normally
Open, Sinking (NPN)
Input Voltage 5 to 24 VDC
Current Rating $\quad 50 \mathrm{~mA}$ max.
Voltage Drop 0.5 V
Off State Leakage $10 \mu \mathrm{~A}$ max.
Quiescent Current 5 mA max.
Turn ON/OFF Time 0.10 millisecond
Operating -20° to $85^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to
Temperature $185^{\circ} \mathrm{F}$)
Enclosure IEC IP 67
Flammability 94VO
LED Indicator Red
CE Compliant
Over Voltage, Reverse Polarity and Transient Protected

GMR Switch (Models: MSC, MSCX, MSCQ)

Circuit	3 Wire, Normally Open, Sourcing (PNP)
Input Voltage	5 to 24 VDC
Current Rating	50 mA max.
Voltage Drop	1.5 V
Off State Leakage	$10 \mu \mathrm{max}$.
Quiescent Current	5 mA max.
Turn ON/OFF Time	0.10 millisecond
Operating	-20° to $85^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to
Temperature	$\left.185^{\circ} \mathrm{F}\right)$
Enclosure	IEC IP 67
Flammability	94 VO
LED Indicator	Yellow
	CE Compliant
	Over Voltage, Reverse Polarity
	and Transient Protected

GMR Switch (Models: MS, MSC, MSQ)
Circuit 3 Wire, Normally
Open, Sinking (NPN)
or Sourcing (PNP)
Input Voltage 5 to 24 VDC
Input Current 25 mA max.
"ON" Voltage Drop
Sinking 0.4 Volts max.
Sourcing 1.5 Volts max.
Output Current $\quad 25 \mu \mathrm{~A}$ max.
Power Dissipation $\quad 300 \mathrm{~mW}$ max.
Turn ON/OFF Time 0.10 millisecond
Operating -20° to $85^{\circ} \mathrm{C}\left(-20^{\circ}\right.$ to
Temperature 185°)
Off State Leakage 10 microamp max.
Signal Repeatability $\pm 0.4 \mathrm{~mm}\left(.015^{\prime \prime}\right)$
LED Indicator Red
Transient Protection 500 Watts of Peak Power
Over Voltage Protection 27 VDC max 16A max
CE Compliant
Reverse Polarity Protection
Note--Ensure load is on at power up. Autoconfiguration circuit will reset to proper output after each cycle.

PCQ, PKQ, PCMQ, PKMQ Switches

Output: Transistor, Normally Open
Load Current:
Leakage Current: Voltage Drop:
Short Circuit and Overload Protection:
Reverse Polarity Protection:
Supply Voltage: 10-30VDC
LED:
Current Consumption:
Repeatability: Hysteresis:
Sensing Range:
Response Time:
Electromagnetic Compatibility Compliance:
Protection Class:
Ambient Temperature:
Housing Material:
Sensing Face:
Connector: 3 pin 8mm DIN Std
Approvals: UL-general purpose
CSA-general purpose
FM-nonincendive
CE Certification
NEMAICS5-1996
IP67
$-14 F$ to 158 F (-25C to 70C)
Nickel-plated brass
Crastin

FM-nonincendiv

Electrical Specifications

Load Current Derating Curves

MRS-. 027

MRS-. 087 MRS-.087-B MRS-.087-BQ RSU-1 RSUM-1

MRS-.087-PBL MRS-.087-PBLQ volts vs WATTS @ MAX. CURRENT (2OmA)

MRS-.087-BL MRS-.087-BLQ

Electrical Specifications

\(\left.\begin{array}{l}MRS-. \mathbf{0 2 7}

(2 wire switch)\end{array}\right]\)| Contacts.....SPST Form A (Normally Open) |
| :--- |
| Contact Rating....................... 3 Watts max. |
| Switch Voltage....................... 28 Volts max. |
| Maximum Current 250 mA max. (Resistive) |
| Actuating Time Average...... 1.0 millisecond |

MRS-.087-BQ (2 wire switch)

Contacts.....SPST Form A (Normally Open)
Contact Rating \qquad . 10 Watts max.
Switch Voltage \qquad 120 Volts AC or DC
Maximum Current: .500 mA (Resistive)
Actuating Time Average...... 1.0 millisecond

> MRS-.087-PBL
> MRS-.087-PBLQ (2 wire switch)

Contacts.....SPST Form A (Normally Open) Contact Rating \qquad .2.5 Watts max.
Switch Voltage 3 to 120 Volts AC or DC Minimum Current 10 mA AC or DC
Maximum Current............. 20 mA AC or DC
Initial Contact Resistance 0.10 ohms max.
Actuating Time Average...... 1.0 millisecond
LED Indicator

MRS-1.5 (1-1/16" to 2-1/2")
MRS-1.5-S (9/16" to 3/4" bore) MRS-. 1.5-B (2 wire switch)

Contacts.....SPST Form A (Normally Open) Voltage Rating 12 to 230 Volts (AC only) Minimum Current \qquad .0 .1 amps
Maximum Current ..1.5 amps @ $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$ $0.5 \mathrm{amps} @ 200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$
Actuating Time Average.... 2.0 milliseconds

RSU-1

RSUM-1 (2 wire switch)

Contacts.....SPST Form A (Normally Open) Contact Rating \qquad . 10 Watts max. Switching Voltage ... 200 Volts Max. AC/DC Breakdown Voltage 250 Volts min. Switching Current 500 mA max. Initial Contact Resistance ... 0.2 ohms max. Actuating Time Average...... 1.0 millisecond

Pneu-Turn

NOTE: See page 7.16 for Repeatability and Hysteresis

Switch Application Information

Bimba Solid State Switch

This is a three-wire, solid state device recommended for low current DC loads such as interfacing with a programmable controller. It provides compact, reliable sensing for virtually infinite life. An LED indicator light illuminates when switching occurs. Models are available in current sinking (NPN) and current sourcing (PNP) models. Either can be used for loads such as counters and solid state relays. Selection of sinking or sourcing models depends on the requirements of the programmable controller.

How it works:

The Bimba Solid State Switch is based on giant magnetoresistive (GMR) technology, which was first developed in 1988. It includes 4 Solid State resistors (2 active, 2 shielded), each of which has many thin layers of magnetorsistive material. In each layer, the electrons are oriented opposite the adjacent layer, providing a great deal of resistance to electrical flow. The presence of a magnetic field overcomes the magnetic coupling between the adjacent layers, causing parallel alignment of magnetic moments between layers, and resistance drops significantly. By connecting the 4 resistors in a classic Wheatstone bridge configuration, the voltage across a single resistor is doubled, providing a linear output. This voltage is then amplified, and sent to a comparator that switches the sensor output when it detects that a minimum magnetic field strength is present. High voltage transistors provide TTL-compatible output rated at 25 milliamps. The switch includes reverse polarity, overvoltage and transient protection.

PRINCIPLE OF SOLID STATE (NO MAGNETIC FIELD)

Sinking vs. Sourcing

Bimba offers both sinking and sourcing Solid State Switch models.

Sinking switches are applied to the negative side of a load. When the switch is activated, the negative (ground) is connected, completing the circuit.
Sourcing switches are applied to the positive side of a load. When the switch is activated, power is connected, completing the circuit.

The model needed will be determined by a number of factors, including:

- Company standards.
- PLC input cards. (You may have sinking input cards available or your PLC only has a sinking type. Be aware that for some PLC manufacturers, sourcing input cards require a sinking switch or sinking input cards require a sourcing switch; check the specifications to clarify.)
- Type of circuit. PLC manufacturers typically filter input modules that use sourcing field devices and use unfiltered input modules with sinking field devices.

PRINCIPLE OF SOLID STATE (MAGNETIC FIELD PRESENT)

Typical Solid State Sinking Configuration (NPN)

Typical Solid State Sourcing Configuration (PNP)

Switch Application Information

Helpful Hints

- Be sure your actuator has a magnet option.
- Be sure to match your Solid State Switches to the proper circuits, i.e., sinking switches for sinking circuits and sourcing switches for sourcing circuits.
- Be sure to choose the correct input voltage for the switch ratings.
- Don't try to use a switch with a low current output to drive a high power circuit.
- If you have a high speed application, be sure your load circuitry doesn't have a high signal delay (some circuits have filters which cause signal delays).

Bimba has technical bulletins that describe the following situations:

1. Contact Protection (transient suppression for Reed Switches) for inductive or capacitive load switching.
2. "Or" logic operation for Solid State Switches connected in Parallel.
3. "And" logic operation for Solid State Switches connected in Series.

Visit our website at www.bimba.com and click Tech Center.

Glossary

Actuating Time Average	Average time to close contacts on a reed switch.	Operating Window	See charts. The active window that the sensor will be in the "on" state.
Solid State	Solid State switching device activated by magnetic field.	R-C Network	A filter network that combines a resistor and capacitor in series across a reed switch, that filters the switch from inductive kickback or
Hysteresis	The difference (in distance) between the spot where the switch turns "on" when the piston moves in one direction, and when the switch turns "off" when the piston moves in the opposite direction. This difference occurs because it takes more magnetic force to turn the switch "on" than it does to keep it on.		transients.
		Response	Same as turn on/off time or actuating time average.
		Reverse Polarity Protection	Protects switch damage caused by switching the positive and negative leads.
		Self-Commutation	A condition inherent in triac switching devices.
Inductive Load	The characteristic of an electrical load or device that enables it to store energy while operating and to return that energy to the circuit, as electricity, when the		Self-commutation occurs when transients cause the triac to momentarily turn on, even though a magnetic field is not present.
	current is turned off, i.e., solenoids.	Signal Repeatability	Range at which switch will turn on or off, given the same physical switching point.
Input Current	The amount of current needed to power switch.	Sinking	Term used for device that switches a load to ground (NPN).
Inrush Current	Initial current draw from inductive loads. May be two or three times the rated holding current for such devices.	Sourcing	Term used for device that switches power supply to load (PNP).
Kickback, Inductive	Occurs when inductive loads are switched off. This may cause transients that can damage reed switches.	Triac	A solid state device used to switch inductive AC loads.
		Turn On/Off Time	The amount of time it takes to turn on or off a
MRS	Magnetic Reed Switch is a mechanical switch activated by magnetic field.		Solid State device.
Off-state Leakage	Amount of current flow to output in the off state.		

[^0]: * Use resistor-capacitor protection
 ** Minimum current $=100 \mathrm{~mA}$

[^1]: ${ }^{1}$ Track mount switches.
 ${ }^{2}$ Bands are included in the price.
 ${ }^{3}$ Pigtail leads 12" (305m) for RSU-1 and RSUM-1. These switches are for Ultran Rodless Cylinders.

